- компактное отображение
- компа́ктне відобра́ження
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
ОТОБРАЖЕНИЕ ПЕРИОДОВ — отображение, сопоставляющее точке s базы Sсемейства алгебраич. многообразий над полем С комплексных чисел когомо логии слоя над этой точкой, снабженные Ходжа структурой. Полученная при этом структура Ходжа рассматривается как точка в многообразии … Математическая энциклопедия
Компактное пространство — определённый тип топологических пространств, включающий Все пространства с конечным числом точек; Все замкнутые и ограниченные подмножества евклидова пространства. В топологии компактные пространства по своим свойствам напоминают конечные… … Википедия
Компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
Замкнутое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Открытое отображение — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Непрерывное отображение — или непрерывная функция в математике это отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений. Наиболее общее определение формулируется для отображений… … Википедия
Многозначное отображение — разновидность математического понятия отображения (функции). Пусть и произвольные множества, а совокупность всех подмножеств множества Многозначным отображением из множества в называется всякое отображение … Википедия
Локально компактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
Ограниченно компактное пространство — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
Относительно компактное множество — Компактное пространство это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие. В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.… … Википедия
ФОРМАЛИЗАЦИЯ — (от лат. forma вид, образ) отображение объектов некоторой предметной области с помощью символов к. л. языка. Простейший вид Ф. прямая репрезентация (обозначение, именование, описание) объектов с помощью терминов. Напр., в естественном языке роль… … Философская энциклопедия